Rapid identification of elastic modulus of the interface tissue on dental implants surfaces using reduced-basis method and a neural network.
نویسندگان
چکیده
This paper proposes a rapid inverse analysis approach based on the reduced-basis method (RBM) and neural network (NN) to identify the "unknown" elastic modulus (Young's modulus) of the interfacial tissue between a dental implant and the surrounding bones. In the present RBM-NN approach, a RBM model is first built to compute displacement responses of dental implant-bone structures subjected to a harmonic loading for a set of "assumed" Young's moduli. The RBM model is then used to train a NN model that is used for actual inverse analysis in real-time. Actual experimental measurements of displacement responses are fed into the trained NN model to inversely determine the "true" elastic modulus of the interfacial tissue. As an example, a physical model of dental implant-bone structure is built and inverse analysis is conducted to verify the present RBM-NN approach. Based on numerical simulation and actual experiments, it is confirmed that the identified results are very accurate, reliable, and the computational saving is very significant. The present RBM-NN approach is found robust and efficient for inverse material characterizations in noninvasive and/or nondestructive evaluations.
منابع مشابه
Optimization of Functionally Graded Beams Resting on Elastic Foundations
In this study, two goals are followed. First, by means of the Generalized Differential Quadrature (GDQ) method, parametric analysis on the vibration characteristics of three-parameter Functionally Graded (FG) beams on variable elastic foundations is studied. These parameters include (a) three parameters of power-law distribution, (b) variable Winkler foundation modulus, (c) two-parameter elasti...
متن کاملInverse Identification of Circular Cavity in a 2D Object via Boundary Temperature Measurements Using Artificial Neural Network
In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to sol...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملModeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کاملUtilization of Soil Stabilization with Cement and Copper Slag as Subgrade Materials in Road Embankment Construction
In this study, unconfined compression tests have been conducted to investigate the impacts of copper slag on mechanical characteristics for stabilized cement and un-stabilized soil. Dozens of specimens were prepared at four percentages of cement (i.e. 0%, 2%, 4% and 6%) and five percentages of copper slag (i.e. 0%, 5%, 10%, 15% and 20%) by weight of dry soil. The samples compacted into a cylind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 42 5 شماره
صفحات -
تاریخ انتشار 2009